天体物理研究所

天体物理研究所

天体物理所成立于2013年,现有成员11人。研究所成员完成、承担多项国家、湖北省自然科学基金。   主要研究方向:引力波天文学、星系和尘埃演化、高能天体物理观测研究、中子星天体物理等。天物物理所为湖北省天文学会天体物理活动中心在湖北第二威尼斯官网的联系单位。北京师范大学天文系“长江学者”朱宗宏教授为本所特聘教授。


天物物理研究所研究方向


引力波天文学(范锡龙 肖明)

引力波是爱因斯坦广义相对论的预言。即将到来的引力波探测将开启一个全新的天文学时代。引力波和射电、微波、红外、光学、紫外、X-射线、伽马射线等传统天文观测手段一起构建多信使天文学。    联合电磁-引力波观测将深入的揭示大量的天物理现象的性质。例如,双中子星或者中子星-黑洞并合发射的引力波携带的信息可以解答伽马射线中心能量的谜题。我们正在构建一个新的Bayesian途径研究多信使天文学的方法及其具体应用。

One  hundred years after Einstein’s prediction of gravitational waves  derived by the General Theory of Relativity, the detection of  gravitational waves in the near future will herald a new era of  astronomy, the mutili-message astronomy, together with other traditional  astronomy observations at radio, microwave, infrared, optical,  ultraviolet, X-ray and gamma-ray wavelengths and by astrophysical  neutrinos. 

Joint EM-GW observations will provide deep insight  into the astrophysics of a vast range of astronomical phenomena.  Gravitational waves from the merger of two neutron stars or a neutron  star with a black hole will carry information about the internal  structure of the neutron star, and might reveal the mystery of central  engine of certain types of gamma-ray bursts, the brightest astronomical  events in the electromagnetic spectrum. A new Bayesian approach to  multi-messenger astronomy and its Implementations are under  construction.

星系和尘埃演化 (范锡龙 李志浩 祁红艳)

星系形成和演化是天体物理最有趣的研究领域之一。 星系的金属丰度和化学元素丰度比能很好的限制星系的形成历史,揭秘星系演化的路径。星系的能量谱分布携带星系最直接的观测信息。这些信息和星族合成模型一起,可以作为估算星系质量、恒星形成率、星族年龄的星系特性的探针。

尘埃在天体物理研究中处于非常重要的地位。 任何成功的星系化学演化、星系能量谱分布演化都需要包括尘埃演化或者至少考虑尘埃的某些效应,例如尘埃消光。尘埃产生源、尘埃光学特性及其随红移的演化等研究将在诸如星系形成中的气体如何冷等过程起到重要作用。

Galaxy  formation and evolution is one of the most interesting topics in  Astrophysics. The chemical abundance and abundance ratios make a strict  constraint on the star formation history of galaxies, therefore on the  galaxy evolution framework. 

The SED information of galaxies are  the most directly observational information, which have been used to  constrain galaxy parameters, such as stellar masses, SFRs, and stellar  population ages, via comparison with simple stellar population synthesis  models. 

Dust plays a unique and increasing important role in  Astrophysics. Any successful galactic chemical and SED model should  include the dust or at least take into account the dust effects, like  the extinction. The dust sources, properties and evolution as a function  of redshift are more and more interesting with increasing high redshift  dusty data and the flourish studies on cosmology, given the important  role of dust in some physical processes, such as gas cooling in galaxy  formation.

高能天体物理观测研究 (操小凤 王世芳 范锡龙)

主要包括X射线双星(包括中子星双星和黑洞双星)和伽玛射线暴两个研究方向。X射线双星是由一个致密星(中子星或黑洞)和一个普通的恒星组成的双星系统。恒星的物质被致密星吸积在其周围形成吸积盘,发出X射线辐射。通过对X射线时变和能谱的分析,可研究吸积盘的动力学、致密星附近的广义相对论效应以及限制中子星的物态等。伽玛射线暴是宇宙中最为剧烈的爆发现象,通常认为主要起源于大质量恒星的核心塌缩或双致密星系统的并合。通过对伽玛暴瞬时辐射和余辉的模拟,可以揭示致密天体的能量释放机制、喷流加速机制以及辐射机制等。对伽玛暴空间分布的研究,还有助于对宇宙演化的认识和对引力波辐射的探测。


X-ray  binaries consist of a compact star (neutron star or black hole) and a  normal star. By accreting materials from the normal star, a disk forms  around the compact star, which could produce X-ray emission. By  analyzing the variability and spectrum of the X-ray emission, we can  explore the dynamics of the accretion, the gravitational effects around  the compact star, and the equation of state of neutron stars. Gamma-ray  bursts (GRBs) are the most violent explosions in the universe, which are  widely considered to originate from core-collapse of massive stars or  merger of double compact stars. By modeling the prompt and afterglow  emission of GRBs, we can reveal the energy release mechanism of compact  objects, the acceleration processes of jets, and radiation mechanisms of  plasma. The researches on the spatial distribution of GRBs may also be  able to promote the study of the evolution of the universe and the  detection of gravitational waves.


中子星天体物理(皮春梅 刘明 肖飞)

致密星是恒星塌缩形成的一类致密天体,由于具有极端的物理条件,是物理学研究最好的宇宙实验室。关于致密星内部物质成分、星体结构、磁场、热演化等都是热门课题。随着天文学的发展,越来越丰富的观测数据和各种令人振奋的新现象不断涌现,我们能更有效地限制和检验物理理论对致密星内部的窥视和预测,从而深刻地理解致密星结构和演化。


Compact  stars are born in stellar gravitational collapse. The extreme physical  conditions make such stars superb astrophysical laboratories for a broad  range of exciting physical studies. The internal components, structure,  the magnetic fields and the thermal evolution of compact stars are hot  tops in astrophysics. With the development of the pulsar astronomy, more  and more new observation phenomenon are constantly emergingwhich can be used to limit and examine the relevant physical theory about the interior and the evolution of compact stars.